Piezoelectric Quartz Tuning Forks for Scanning Probe Microscopy
ثبت نشده
چکیده
In this paper the application of piezoelectric quartz tuning forks in dynamic force microscopy is described. For the introduction we give a historical overview and a comparison with traditional cantilevers. In the second section the theories for tuning forks as oscillators for the dynamic force detection are introduced and in the third section the experimental implementation is described. This paper is based on chapter 4 of the dissertation of J. Rychen [1]: “Combined Low-Temperature Scanning Probe Microscopy and Magneto-Transport Experiments for the Local Investigation of Mesoscopic Systems”. Swiss Federal Institute of Technology, Diss. ETH No. 14119.
منابع مشابه
Calibrating a tuning fork for use as a scanning probe microscope force sensor.
Quartz tuning forks mounted with sharp tips provide an alternate method to silicon microcantilevers for probing the tip-substrate interaction in scanning probe microscopy. The high quality factor and stable resonant frequency of the tuning fork allow accurate measurements of small shifts in the resonant frequency as the tip approaches the substrate. To permit an accurate measure of surface inte...
متن کاملMeasuring the interaction force between a tip and a substrate using a quartz tuning fork under ambient conditions.
Tuning forks mounted with sharp tips provide an alternate method to silicon microcantilevers for probing the tip-substrate interaction in scanning probe microscopy. The high quality factor and stable resonant frequency of the tuning fork allow accurate measurements of small shifts in the resonant frequency as the tip approaches the substrate. To permit an accurate measure of surface interaction...
متن کاملApplication of the equipartition theorem to the thermal excitation of quartz tuning forks
The deflection signal of a thermally excited force sensor of an atomic force microscope can be analyzed to gain important information about the detector noise and about the validity of the equipartion theorem of thermodynamics. Here, we measured the temperature dependence of the thermal amplitude of a tuning fork and compared it to the expected values based on the equipartition theorem. In doin...
متن کاملComparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators
The force sensor is key to the performance of atomic force microscopy (AFM). Nowadays, most atomic force microscopes use micromachined force sensors made from silicon, but piezoelectric quartz sensors are being applied at an increasing rate, mainly in vacuum. These self-sensing force sensors allow a relatively easy upgrade of a scanning tunneling microscope to a combined scanning tunneling/atom...
متن کاملOptimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis
Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder ("qPlus" configuration) have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in th...
متن کامل